Pawet Kierat

EPAM Systems

Efektywne generowanie kodu przy uzyciu ChatGPT

26.09.2023

@ pawel@kierat.dev & /pkierat
@ kierat.dev in /in/kierat

Pawel Kierat <pawel@kierat.dev> developers Preface | 1

mailto:pawel@kierat.dev
https://kierat.dev
https://gitlab.com/pkierat
https://linkedin.com/in/kierat
mailto:pawel@kierat.dev

About ChatGPT

Series of machine learning models

Developed by OpenAl

Trained on large data sets

Goal: Generate consistent, natural text

Pawel Kierat <pawel@kierat.dev> developers About ChatGPT | 2

mailto:pawel@kierat.dev

About ChatGPT

Series of machine learning models

Developed by OpenAl

Trained on large data sets

Goal: Generate consistent, natural text
Examples of applications

e Producing answers to queries

* Generating creative content based on user’s requirements

Pawel Kierat <pawel@kierat.dev> developers About ChatGPT | 3

mailto:pawel@kierat.dev

About ChatGPT

Series of machine learning models

Developed by OpenAl

Trained on large data sets

Goal: Generate consistent, natural text
Examples of applications

e Producing answers to queries
* Generating creative content based on user’s requirements

« Generating complete code in variety of programming languages! ©

Pawel Kierat <pawel@kierat.dev> developers About ChatGPT | 4

mailto:pawel@kierat.dev

Known issues with ChatGPT

é The code doesn’t compile or doesn’t work correctly.

Pawet Kierat <pawel@kierat.dev> developers Known issues with ChatGPT | 5

mailto:pawel@kierat.dev

Known issues with ChatGPT

é The code doesn’t compile or doesn’t work correctly.

é The code is incomplete (happy path).

Pawet Kierat <pawel@kierat.dev> developers Known issues with ChatGPT | 6

mailto:pawel@kierat.dev

Known issues with ChatGPT

é The code doesn’t compile or doesn’t work correctly.
é The code is incomplete (happy path).

o The code is of low quality (unmaintainable).

Pawet Kierat <pawel@kierat.dev> developers Known issues with ChatGPT | 7

mailto:pawel@kierat.dev

Known issues with ChatGPT

O

¢ ¢ ¢

The code doesn’t compile or doesn’t work correctly.
The code is incomplete (happy path).

The code is of low quality (unmaintainable).

The code is based on solutions taken from the Internet.

Pawel Kierat <pawel@kierat.dev> developers

Known issues with ChatGPT | 8

mailto:pawel@kierat.dev

Known issues with ChatGPT

O

¢ ¢ ¢ ¢

The code doesn’t compile or doesn’t work correctly.
The code is incomplete (happy path).

The code is of low quality (unmaintainable).

The code is based on solutions taken from the Internet.

Problems with memory and concentration.

Pawel Kierat <pawel@kierat.dev> developers

Known issues with ChatGPT | 9

mailto:pawel@kierat.dev

Known issues with ChatGPT

O

¢ ¢ ¢ ¢ ¢

The code doesn’t compile or doesn’t work correctly.
The code is incomplete (happy path).

The code is of low quality (unmaintainable).

The code is based on solutions taken from the Internet.

Problems with memory and concentration.

Rewriting everything from scratch.

Pawel Kierat <pawel@kierat.dev> developers

Known issues with ChatGPT | 10

mailto:pawel@kierat.dev

Known issues with ChatGPT developers

é The code doesn’t compile or doesn’t work correctly.
The code is incomplete (happy path).

The code is of low quality (unmaintainable).

The code is based on solutions taken from the Internet.
Problems with memory and concentration.

Rewriting everything from scratch.

¢ ¢ ¢ ¢ ¢

Pawet Kierat <pawel@kierat.dev> developers Known issues with €hatcPF developers | 11

GGGGGG

mailto:pawel@kierat.dev

Assumptions for experiments

» Code written almost exclusively by Al
 Work in conversational mode

 Human operator:

[e]

provides functional requirements

[e]

defines project structure, libraries, tools

sets the direction

[e]

[}

verifies the correctness

o

gives hints and corrects

Pawel Kierat <pawel@kierat.dev> developers

Assumptions for experiments | 12

mailto:pawel@kierat.dev

Experiment 1: Coding to requirements

Problem

o The code is incomplete (happy path)

Pawet Kierat <pawel@kierat.dev> developers Experiment 1: Coding to requirements | 13

mailto:pawel@kierat.dev

Experiment 1: Coding to requirements

Problem
o The code is incomplete (happy path)
Solution

(’7 Work in iterations

Pawet Kierat <pawel@kierat.dev> developers Experiment 1: Coding to requirements | 14

mailto:pawel@kierat.dev

Let's do some Java coding. I'll be giving you the requirements in rounds (one by one) and
your job is to implement them. Make sure to:
* not implement features that are not covered by the requirements given so far,

* not break the already existing features.

Sure, I'm happy to assist with your Java coding task. Please provide the first round of

requirements, and I'll do my best to implement them according to your specifications.

https://chat.openai.com/share/cd4f7bea-a783-43f1-b141-38670d261268

Pawel Kierat <pawel@kierat.dev> developers Experiment 1: Coding to requirements | 15

https://chat.openai.com/share/cd4f7bea-a783-43f1-b141-38670d261268
mailto:pawel@kierat.dev

) copycode

java.util.Scanner;

java.util.Random;

{
(String[] args) {
();
= rand.nextInt() + 15

= (System.in);
System.out.println(

= scanner.nextInt();

(userGuess == numberToGuess) {

System.out.println()
{

System.out.println()

scanner.close();

Pawet Kierat <pawel@kierat.dev>

deyelopers Experiment 1: Coding to requirements | 16

mailto:pawel@kierat.dev

Result

* Everything in just 15 steps (10 requirements),

» Works according to the requirements.

But...

Pawel Kierat <pawel@kierat.dev> developers Result | 17

mailto:pawel@kierat.dev

Result

* Everything in just 15 steps (10 requirements),

» Works according to the requirements.
But...
* Not always according to common sense.

Moreover...

Pawel Kierat <pawel@kierat.dev> developers Result | 18

mailto:pawel@kierat.dev

Result

* Everything in just 15 steps (10 requirements),

» Works according to the requirements.
But...

* Not always according to common sense.
Moreover...

* 79 lines of code,
» All in one file, one class, one method!

* Cyclomatic complexity: 36! (a.k.a. Bloody hell!)

Pawel Kierat <pawel@kierat.dev> developers

Result | 19

mailto:pawel@kierat.dev

Experiment 2: Test cases

Problem

o Problems with memory and concentration.

Pawet Kierat <pawel@kierat.dev> developers Experiment 2: Test cases | 20

mailto:pawel@kierat.dev

Experiment 2: Test cases

Problem

o Problems with memory and concentration.

Solution

(’7 Work in iterations

@ Discipline and repetition!

Pawel Kierat <pawel@kierat.dev> developers

Experiment 2: Test cases | 21

mailto:pawel@kierat.dev

(@] .
The rules:

1. We start with an empty Java metod accepting a string as a parameter and returning
another string. It's fine to add more helper methods if necessary, but this will be our entry
point.

2. The coding process will be iterative. In each round | give a new pair of strings, where the
first one is the argument and the second one is an expected return value. We can call it a test
case. Your task is to improve the code we already have to satisfy all test cases provided so
far.

What say you?

That sounds like a great plan! I'm ready to get started. Please provide me with the initial Java

method so that we have a starting point.

https://chat.openai.com/share/1879fb78-602d-43c7-adfc-bd407f47a93a

Pawel Kierat <pawel@kierat.dev> developers Experiment 2: Test cases | 22

GDAKSK

https://chat.openai.com/share/1879fb78-602d-43c7-adfc-bd407f47a93a
mailto:pawel@kierat.dev

Now, the code will reverse the input string and return the reversed string as the output. Let's

proceed to the next test case.

We can't. Have you checked all the test cases?

Apologies for the oversight. You're right; | should have checked all the test cases before
proceeding. Let's go through all the test cases we have so far to ensure that the code

satisfies all of them:
TestCase1: (""", "")"

* The code returns an empty string, which matches the expected output.

Pawel Kierat <pawel@kierat.dev> developers Experiment 2: Test cases | 23

mailto:pawel@kierat.dev

Here's the updated table with the new test case:

Test Case

1

Input

"ab"
"ha"
"cdab"
"aab"
"rrdd"

"aababaccac"

Expected Output

nn

"
"o
"abed”
"a2b"
"r2d2"

"aSb2c3"

Actual Output

nn

"ab"
"ab"
"abcd"
"a2b"

"r2d2"

SN BE<HE<BE<RE< B < B
c
=

Let's modify the code to replace consecutive duplicate characters with the character

followed by the count and test it with the new test case:

Pawel Kierat <pawel@kierat.dev>

developers
GDANSK

Experiment 2: Test cases | 24

mailto:pawel@kierat.dev

) copycede

String (String input) {
(OF

= 0; i < input.length() - 1; i++) {
(input.charAt(i) == input.charAt(i + 1)) {
count++;

{
result.append(input.charAt(i))

(count > 1) {

result.append(count);
}

count = 1;

}
result.append(input.charAt(input.length() -
(count > 1) {

result.append(count);

result.toString();

Pawet Kierat <pawel@kierat.dev> developers Experiment 2: Test cases | 25

GDANSK

mailto:pawel@kierat.dev

Experiment 3: Refactoring

Problem

o The code is of low quality (unmaintainable)

é Rewriting everything from scratch

Pawel Kierat <pawel@kierat.dev> developers Experiment 3: Refactoring | 26

mailto:pawel@kierat.dev

Experiment 3: Refactoring

Problem

o The code is of low quality (unmaintainable)

é Rewriting everything from scratch
Solution

@ Code modularity

Pawel Kierat <pawel@kierat.dev> developers Experiment 3: Refactoring | 27

mailto:pawel@kierat.dev

If you have any further questions or need assistance with anything else, please let me know!

Good job! Now that we have a decent set of tests, it's time for refactoring! Let's start from "3
lines per method body". You can freely extract methods, change the signatures etc. to
achieve that goal, but don't touch the "runTests" method.

Thank you! | appreciate the opportunity to refactor the code while adhering to the "3 lines
per method body" guideline. Here's the updated code with refactored methods:

Pawel Kierat <pawel@kierat.dev> developers Experiment 3: Refactoring | 28

mailto:pawel@kierat.dev

String (String input) {
Map<Character, Integer> charCountMap = buildCharacterCountMap(input);

buildCompressedString(charCountMap);

Map<Character, Integer> (String input) {
input.chars()
.mapToObj(ch -> () ch)
.collect(HashMap:: , (map, ch) -> map.merge(ch, 1, Integer::sum), HashMap::putAll);

String (Map<Character, Integer> charCountMap) {
charCountMap.entrySet().stream()
.map(entry -> entry.getkKey() + (entry.getValue() > ? entry.getValue().toString()

.reduce("", String::concat);

Pawet Kierat <pawel@kierat.dev> developers Experiment 3: Refactoring | 29

GDANSK

mailto:pawel@kierat.dev

Experiment 4: Test automation

Problem

o The code doesn’t compile or doesn’t work correctly

é Problems with memory and concentration.(takze u czlowieka)

Pawet Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 30

mailto:pawel@kierat.dev

Experiment 4: Test automation

Problem

o The code doesn’t compile or doesn’t work correctly

é Problems with memory and concentration (also in case of human operator)
Solution

@ Test-Driven Development

Pawet Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 31

mailto:pawel@kierat.dev

H Let's code in Java using TDD:

1. First comes the entry in TODO list, shortly describing the thing we want to implement.
2. Then comes the test for it. One test, not two, not three.

3. Once the test is ready, write the *minimal* implementation that makes it pass. Keep in
mind that in the end, all tests must pass, not just the last one.

4. Once we're done with implementation, we'll search for redundancies in the code and
remove them.

5.Goto point 1.

We'll work on each of the points until we are satisfied with the result. DO NOT proceed with
the next step without explicit approval from my side.

Topic: Number guessing game.
Testing framework: JUnit 5.

Let's start with the first item to do.

https://chat.openai.com/share/fbabc508-d347-49d5-b218-eba66¢cf65aa3

Pawel Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 32

GDAKSK

https://chat.openai.com/share/fbabc508-d347-49d5-b218-eba66cf65aa3
mailto:pawel@kierat.dev

H Let's code in Java using TDD:

1. First comes the entry in TODO list, shortly describing the thing we want to implement.
2. Then comes the test for it. One test, not two, not three.

3. Once the test is ready, write the *minimal* implementation that makes it pass. Keep in
mind that in the end, all tests must pass, not just the last one.

4. Once we're done with implementation, we'll search for redundancies in the code and
remove them.

5.Goto point 1.

We'll work on each of the points until we are satisfied with the result. DO NOT proceed with
the next step without explicit approval from my side.

Topic: Number guessing game.
Testing framework: JUnit 5.

Let's start with the first item to do.

https://chat.openai.com/share/fbabc508-d347-49d5-b218-eba66¢cf65aa3

Pawel Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 33

GDAKSK

https://chat.openai.com/share/fbabc508-d347-49d5-b218-eba66cf65aa3
mailto:pawel@kierat.dev

Alright! Let's begin by building a number guessing game using TDD.

TODO List:

The game generates a random number between 1and 100.
The player can guess the number.
The game provides feedback about the guess - "too high", "too low", or "correct".

The game counts the number of attempts.

o 0 b H

The game can be reset, starting a new game with a new random number.

To start with our first task, we'll focus on:

"The game generates a random number between 1and 100."

Pawel Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 34

GGGGGG

mailto:pawel@kierat.dev

Test

Here is a test case for this task:

) Copycode

org.junit.jupiter.api.Test;

org.junit.jupiter.api.Assertions.*;

() {
= ();
= game.getGeneratedNumber();

assertTrue(generatedNumber >= && generatedNumber <=)

Pawet Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 35

GDANSK

mailto:pawel@kierat.dev

Alright, let's proceed with the minimal implementation:

E] Copy code

java.util.Random;

generatedNumber;

0 {

this.generatedNumber = ().nextInt(

generatedNumber;

Pawet Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 36

GDANSK

mailto:pawel@kierat.dev

You're right. | made a classic mistake in TDD by implementing a bit more than the minimal

requirement. Truly minimal would be to hard-code a value between 1and 100.

Here's the truly minimal implementation:

] copycode

generatedNumber;

0O {

this.generatedNumber =

generatedNumber;

Pawet Kierat <pawel@kierat.dev> developers Experiment 4: Test automation | 37

mailto:pawel@kierat.dev

Experiment 5: Interfaces

Problem

o Problems with memory and concentration
é Rewriting everything from scratch

° The code is of low quality (unmaintainable)

Pawel Kierat <pawel@kierat.dev> developers

Experiment 5: Interfaces | 38

mailto:pawel@kierat.dev

Experiment 5: Interfaces

Problem

o Problems with memory and concentration
é Rewriting everything from scratch

° The code is of low quality (unmaintainable)
Solution

@ Walking Skeleton

Pawel Kierat <pawel@kierat.dev> developers

Experiment 5: Interfaces | 39

mailto:pawel@kierat.dev

Let's write a game of TicTacToe in Java together, using a walking skeleton approach. We'll
start from the main class of the game and maintain Single Responsibility Principle by
extracting smaller responsibilities to separate classes. The implementations will be hidden
behind interfaces and injected via constructors.

Alright, let's get started. A "walking skeleton" is an approach where you build a bare-bones
system that covers the end-to-end functionality, albeit in a very minimal way. You then build

on this, fleshing out each component to fully realize its function.

So, let's start with the basic structure of our game:

https://chat.openai.com/share/bb74562d-fb17-4e28-99a2-e7edf84e3348

Pawel Kierat <pawel@kierat.dev> developers Experiment 5: Interfaces | 40

https://chat.openai.com/share/bb74562d-fb17-4e28-99a2-e7edf84e3348
mailto:pawel@kierat.dev

At the beginning...

public interface Player { public interface Board {
int[] makeMove(Board); boolean isMovelegal(int, int);
char getSymbol(); void makeMove(int, int, char);
} }

public static void main(String[] args) {
Player player1 = new HumanPlayer('X'); // We'll create these...
Player player2 = new AIPlayer('0'); // We'll create these...
Board board = new ArrayBoard(3, 3); // We'll create these...
new TicTacToe(player1, player2, board).start();

Pawel Kierat <pawel@kierat.dev> developers At the beginning... | 41

mailto:pawel@kierat.dev

public void start() {
Player currentPlayer = player1;
while (true) {
board.printBoard();
int[] move = currentPlayer.makeMove(board);
1f (board.isMovelLegal(move[@], move[1])) {
board.makeMove(move[@], move[1], currentPlayer.getSymbol());
if (board.checkWin()) { ... } else if (board.checkDraw()) { ... }
currentPlayer = (currentPlayer == player1) ? player2 : playerT;
} else {
System.out.println("I1legal move, please try again.");

¥
}
}

Pawel Kierat <pawel@kierat.dev> developers At the beginning... | 42

mailto:pawel@kierat.dev

At the end (of iteration)...

public static void main(String[] args) {

Player player1 = new HumanPlayer(TicTacToeSymbol.X);

Player player2 = new AIPlayer(TicTacToeSymbol.0);

PlayerRotation playerRotation = new CircularPlayerRotation(player1,
player?2);

Board board = new ArrayBoard(3, 3);

Referee referee = new TicTacToeReferee();

Announcer announcer = new ConsoleAnnouncer();

GameKeeper gameKeeper = new GameKeeper(referee, announcer);

BoardPrinter boardPrinter = new ConsoleBoardPrinter();

new TicTacToe(board, gameKeeper, playerRotation, boardPrinter).start();

Pawel Kierat <pawel@kierat.dev> developers At the end (of iteration)... | 43

mailto:pawel@kierat.dev

public void start() {

GameState gameState;

do {
board.accept(boardPrinter);
Player currentPlayer = playerRotation.nextPlayer();
Turn turn = new Turn(currentPlayer, turnNumber++);
Move move = gameKeeper.getNextMove(turn, board);
board.updateState(move, currentPlayer);
gameState = gameKeeper.getGameState(board);

} while (!gameState.isFinal());

gameKeeper.announceGameState(gameState);

Pawel Kierat <pawel@kierat.dev> developers At the end (of iteration)... | 44

mailto:pawel@kierat.dev

Experiment 6: Contracts

Problem

o The code doesn’t compile or doesn’t work correctly

é Problems with memory and concentration

Pawet Kierat <pawel@kierat.dev> developers Experiment 6: Contracts | 45

mailto:pawel@kierat.dev

Experiment 6: Contracts

Problem

o The code doesn’t compile or doesn’t work correctly

é Problems with memory and concentration
Solution

@ Contract-Driven Development

Pawel Kierat <pawel@kierat.dev> developers

Experiment 6: Contracts | 46

mailto:pawel@kierat.dev

ﬂ Do you know Java Modeling Language?

Yes, I'm familiar with Java Modeling Language (JML). JML is a behavioral interface
specification language for Java programs. It allows you to specify the expected behavior of
Java code using annotations. These annotations can express preconditions, postconditions,

and invariants that define the constraints and properties of the code.

JML provides a way to formally specify the expected behavior of Java methods and classes,
allowing for more rigorous software development. It helps in improving program correctness

and aids in code maintenance and documentation.

https://chat.openai.com/share/6eb7d98a-6cca-4e63-8¢31-7f218443d5d7

Pawel Kierat <pawel@kierat.dev> developers Experiment 6: Contracts | 47

https://chat.openai.com/share/6eb7d98a-6cca-4e63-8c31-7f218443d5d7
mailto:pawel@kierat.dev

n Write a specification in JML for a java method which takes an array of integers and returns an
array with the numbers sorted ascendingly.

//@ requires arr != null;

//@ ensures \result != null;

//@ ensures \fresh(\result);

//@ ensures \result.length == arr.length;

//@ ensures (\forall int 1i;

//@ 0 <=1 && 1 < \result.length - 1;
//@ \result[i] <= \result[i+1]);

public int[] sortArray(int[] arr) {
// Method implementation

}

Pawel Kierat <pawel@kierat.dev> developers Experiment 6: Contracts | 48

mailto:pawel@kierat.dev

Implementation

//@ requires arr != null;
//@ ensures \result != null;
//@ ensures \fresh(\result);
//@ ensures \result.length == arr.length;
//@ ensures (\forall int i; @ <= 1 && 1 < \result.length - 1;
//@ \result[i] <= \result[i+1]);
public int[] sortArray(int[] arr) {
return (arr.length <= 1) 7 arr : (
swap(arr, @, findMinIndex(arr, 9)),
sortArray(Arrays.copyOfRange(arr, 1, arr.length))

)

Pawet Kierat <pawel@kierat.dev> developers Implementation | 49

mailto:pawel@kierat.dev

//@ requires arr != null;

//@ requires start >= 0 && start < arr.length;

//@ ensures \result >= start && \result < arr.length;

//@ ensures (\forall int 1i; start <= 1 && 1 < arr.length;
//@ arr[\result] <= arr[i]);

private int findMinIndex(int[] arr, int start) {
return (start == arr.length - 1) 7 start : (
(arr[start] <= arr[start + 1]) 7 start
: findMinIndex(arr, start + 1)

Pawel Kierat <pawel@kierat.dev> developers Implementation | 50

mailto:pawel@kierat.dev

//@ requires arr != null;
//@ requires 1 >= 0 && 1 < arr.length;
//@ requires j >= 0 && j < arr.length;
//@ ensures arr[1] == \old(arr[j]) && arr[j] == \old(arr[i]);
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

Pawel Kierat <pawel@kierat.dev> developers Implementation | 51

mailto:pawel@kierat.dev

What to choose?

Pawel Kierat <pawel@kierat.dev> developers What to choose? | 52

GGGGGG

mailto:pawel@kierat.dev

What to choose?

4
("

- ¥
L]}

Pawel Kierat <pawel@kierat.dev> developers What to choose? | 53

mailto:pawel@kierat.dev

Walking Skeleton + CDD + TDD
Walking Skeleton

* Supports loose coupling of coponents through interfaces

* Increases code testability, maintainability and expandability
Contract-Driven Development

» Defines clear and precise expectations about the code
Test-Driven Development

* Ensures high code coverage

» Allows to focus on a small fragment of the system

Pawel Kierat <pawel@kierat.dev> developers

GGGGGG

Walking Skeleton + CDD + TDD | 54

mailto:pawel@kierat.dev

REFACTOR CONTRACT

Pawel Kierat <pawel@kierat.dev> developers Walking Skeleton + CDD + TDD | 55

mailto:pawel@kierat.dev

n Let's code code something in Java. Here's the approach we will use.

We will work in iterations (or rounds). Each round will consist of the following steps:
First, we'll choose a piece of the application we would like to implement (a single
requirement).

Next, we'll design a Java interface with a method (or methods) that will fulfill that
requirement.

Then, for each method in the interface we will:

* design a contract; we'll use JML for this purpose.

* write a test based on that contract; we'll use JUnit 5 here.

* write a skeleton of the implementation.

Once the tests pass, we'll refactor the code by extracting methods and interfaces if
necessary.

When we're satisfied with the code and all tests pass, we take one of the extracted interfaces
and repeat the entire procedure.

What do you think?

S Regenerate

https://chat.openai.com/share/9723d156-20f2-41ef-a7c4-d95df4bfc7f2

Pawel Kierat <pawel@kierat.dev> developers Walking Skeleton + CDD + TDD | 56

https://chat.openai.com/share/9723d156-20f2-41ef-a7c4-d95df4bfc7f2
mailto:pawel@kierat.dev

Preparation

n Let's implement a game of Checkers. Before we start, let's build a domain vocabulary that
we'll use to build our application (like in DDD).

Sure, Domain-Driven Design (DDD) is a good approach for tackling complexity and building
a common language for both developers and stakeholders. Having a well-defined domain
vocabulary can clarify our discussions and code. Here's a start at some of the terms we
might use for a Checkers game:

Domain Vocabulary for Checkers

1. Board: The game field where pieces are placed. Typically, an 8x8 grid.
2. Square: A single spot on the board where a piece may be located. > Regenerate

Pawel Kierat <pawel@kierat.dev> developers Preparation | 57

GDAKSK

mailto:pawel@kierat.dev

Interface

) copycode

GameResult

Pawel Kierat <pawel@kierat.dev> developers Interface | 58

GDANSK

mailto:pawel@kierat.dev

Contract

) copycode

GameResult

Pawel Kierat <pawel@kierat.dev> developers Contract | 59

GDANSK

mailto:pawel@kierat.dev

First test

1 copycode

org.junit.jupiter.api.Test;

org.junit. jupiter.api.Assertions.assertNotNull;

= gameSession.play();

assertNotNull(result,

Pawel Kierat <pawel@kierat.dev> developers First test | 60

GDANSK

mailto:pawel@kierat.dev

Skeleton (pseudocode)

pseudo I:] Copy code

function play() -> GameResult
initializeBoard()

initializePlayers()

while not rulesEngine.isGameOver()
currentPlayer = determineNextPlayer()
move = currentPlayer.makeMove()
if rulesEngine.isValidMove(move)
updateBoard(move)
else
return invalidMoveResult() // This could be a type of GameResult
end if

end while

return determineGameResult()

end function

Pawet Kierat <pawel@kierat.dev> developers Skeleton (pseudocode) | 61

mailto:pawel@kierat.dev

Implementation (after refactoring)

E] Copy code

GameResult () {
(!rulesEngine.isGameOver(board)) {
= turnManager.getNextPlayer();

board = executeValidMove(currentPlayer, board);

rulesEngine.determineGameResult(boaxrd);

Pawel Kierat <pawel@kierat.dev> developers Implementation (after refactoring) | 62

mailto:pawel@kierat.dev

2] Copy code

(Player player, Board board)

= player.makeMove(boazrd);
board.update(move);
(InvalidMoveException e) {

player.notifyInvalidMove();

Pawel Kierat <pawel@kierat.dev> developers Implementation (after refactoring) | 63

GDANSK

mailto:pawel@kierat.dev

What else helps?

@ : :
Precise requirements
0 Broader context
@ Knowledge and experience
0 Discipline and control
@ :
Patience

@ Kindness and encouragement

Pawet Kierat <pawel@kierat.dev> developers

GGGGGG

What else helps? | 64

mailto:pawel@kierat.dev

Pawel Kierat <pawel@kierat.dev> developers What else helps? | 65

GDANSK

mailto:pawel@kierat.dev

eventory

developers
GDANSK

Ocen moj wyktad
w aplikacji Eventory

o Wejdz w agende
e Kliknij w wybrany wyktad

e Ocen

26.09.2023

	Effective code generation with ChatGPT
	About ChatGPT
	About ChatGPT
	About ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT
	Known issues with ChatGPT developers
	Assumptions for experiments
	Experiment 1: Coding to requirements
	Experiment 1: Coding to requirements
	Result
	Result
	Result

	Experiment 2: Test cases
	Experiment 2: Test cases
	Experiment 3: Refactoring
	Experiment 3: Refactoring
	Experiment 4: Test automation
	Experiment 4: Test automation
	Experiment 5: Interfaces
	Experiment 5: Interfaces
	At the beginning…​
	At the end (of iteration)…​

	Experiment 6: Contracts
	Experiment 6: Contracts
	Implementation

	What to choose?
	What to choose?
	Walking Skeleton + CDD + TDD
	Preparation
	Interface
	Contract
	First test
	Skeleton (pseudocode)
	Implementation (after refactoring)
	What else helps?

